5. The Pi-theorem.

Theorem: Let

 

be a unit free physical law that relates the dimensioned quantities q1,q2,…,qm. Let L1,L2,…,Ln (where n<m) be the fundamental dimensions with

 

and let r=rank(A), where A is the dimension matrix. Then there are m-r independent dimensionless quantities

 

that can be formed from q1,q2,…,qm. Moreover, the physical law above is equivalent with an equation

 

which is solely expressed in dimensionless quantities.

Example: In our introductory example we had

 

(m=4) with the fundamental dimensions T, L, M (n=3) and

 

The dimension matrix will then become

 

with rank(A)=3. This implies that we have m-r=4-3=1 dimensionless variable.

Remark: The following three characterisations of the rank rank(A) of a matrix A are equivalent:
1) The number of nonzero rows of the transformed upper triangular matrix.
2) The number of linearly independent rows or columns of A.
3) The highest order of nonzero subdeterminants to A.

Example: The matrix 

 

has rank 2.
Method 1 gives rank(A)=2 since admissible row operations show that

 

Method 2 gives rank(A)=2 since row3 is row1 plus 2 times row2 while row2 is not a multiple of row1

Method 3 gives rank(A)=2 since 

 

while

 

Proof (not complete) of the Pi-theorem:
Let  be the dimensionless quantity

 

Expressed in the fundamental quantities L1,L2,,…,Ln we then have

Since 

 

the exponents must be 0, that is

 

We have m unknowns and n equations, where m>n and the system rank is r. From linear algebra we know that there are m-r linearly independent solutions. Every such solution induces one dimensionless variable.

www.larserikpersson.se